Article 1118

Title of the article

APPROXIMATED METHODS FOR COMPUTATION OF SINGULAR AND HYPERSINGULAR INTEGRALS 
WITH RAPIDLY OSCILLATING KERNELS 

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), boikov@pnzgu.ru
Esaf'eva Viktoriya Aleksandrovna, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), viktoriya.esafieva@gmail.com

Index UDK

519.64

DOI

10.21685/2072-3040-2018-1-1

Abstract

Background. There are a lot of problems both in physics and technology, and directly in various sections of mathematics, in the study of which there arises the need for calculating integrals (including singular and hyper-singular) from rapidly oscillating functions. Since direct computation of such integrals is possible only in exceptional cases, it becomes necessary to develop approximate methods. The article is devoted to the construction of approximate methods for calculating singular and hyper-singular integrals, whose kernels include rapidly oscillating functions. Particular attention is paid to constructing quadrature formulas that are optimal in precision (in order).
Materials and methods. The paper presents two methods for calculating singular and hypersingular integrals with rapidly oscillating kernels. One method is based on the transformation of the above-mentioned integrals to ordinary differential equations and the numerical solution of the latter. The second method consists in constructing quadrature formulas of the interpolation type. To obtain lower bounds of the error of quadrature formulas on function classes, we use the method of averaging over equidistant nodes.
Results. There have been built quadrature formulas that are optimal in precision (order) for computing singular and hyper-singular integrals with rapidly oscillating kernels in Holder function classes and Wr (M), where r = 1,2,...,M – a positive constant. The article introduces the algorithm of transformation of sungular and hyper-singular integrals into regular differential equations.
Conclusions. The paper proposes methods for computing singular and hypersingular integrals with rapidly oscillating kernels that may be applied for problem solving in physics, technology and calculus mathematics.

Key words

rapidly oscillating function, singular and hypersingular integrals, quadrature formulas optimal in precision (order).

 Download PDF
References

1. Zadiraka V. K. Teoriya vychisleniya preobrazovaniya Fur'e [The Fourier transform computing theory]. Kiev: Naukova dumka, 1983, 216 p.
2. Zhileykin Ya. B. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 1971, vol. 11, no. 1, pp. 263–266.
3. Zhileykin Ya. B., Kukarkin A. B. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 1978, vol. 18, no. 2, pp. 294–301.
4. Litvin O. N., Nechuyviter O. P. Nauchnye vedomosti BelGU. Ser. Matematika. Fizika [Proceedings of BelSU. Series: Mathematics. Physics]. 2013, no. 19 (162), iss. 32, pp. 101–107.
5. Lovetskiy K. P., Migal' I. A. Naukovedenie [Sociology of science]. 2015, vol. 7, no. 2. Available at: http//naukovedenie.ru/ PDF / 70TVN315, pdf (dostup svobodnyy). Zagl. sekrana. yaz. rus. angl. DOI: 10. 15862/ 70TVN 315.
6. Hadamard J. Lecons sur la Propagation des Ondes et les Equations de l'Hydrodynamique. Herman [Lessons on Wave Propagation and Hydrodynamic Equations. Herman]. Paris, 1903, 320 p. (Reprinted by Chelsea. – New York, 1949).
7. Adamar Zh. Issledovanie psikhologii protsessa izobreteniya v oblasti matematiki [A research of the invention process in the field of mathematics]. Moscow: Sov. radio, 1970, 152 p.
8. Chikin L. A. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta [Proceedings of Kazan State University]. 1953, vol. 113, no. 10, pp. 57–105.
9. Boykov I. V. Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Ch. II. Gipersingulyarnye integraly [Approximate methods of computing singular and hyper-singular integrals. Part II. Hyper-singular equations]. Penza: Izd-vo
PGU, 2009, 252 p.
10. Bakhvalov N. S. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 1970, vol. 10, no. 3, pp. 555–568.
11. Sukharev A. G. Minimaksnye algoritmy v zadachakh chislennogo analiza [Minimax algorithms in numerical analysis problems]. Moscow: Nauka, 1989, 304 p.
12. Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoy fiziki [Theoretical bases and building of numerical algorithms in problems of mathematical physics]. Ed. by K. I. Babenko. Moscow: Nauka, 1979, 196 p.
13. Traub Dzh., Vozh'nyakovskiy Kh. Obshchaya teoriya optimal'nykh algoritmov [The general theory of optimal algorithms]. Moscow: Mir, 1983, 382 p.
14. Boykov I. V. Optimal'nye po tochnosti algoritmy priblizhennogo vychisleniya singulyarnykh integralov [Pecision-optimal algorithms of approximate numerical computing of singular integrals]. Saratov: Izd-vo Sarat. gos. un-ta, 1983, 210 p.
15. Boykov I. V. Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Ch. I. Singulyarnye integraly [Approximate methods of computing singular and hyper-singular integrals. Part I. Singular equations]. Penza: Izd-vo PGU, 2005,
360 p.

 

Дата создания: 13.06.2018 13:33
Дата обновления: 28.08.2018 13:42